

mguchiQ

Concepts

mguchiQ

Contents

1. Overview

2. How Results are Calculated

3. Models

3.1. Products

3.1.1. Constants

3.1.2. Variables

3.1.2.1. Instance Variables

3.1.2.2. Non-instance Variables

3.1.2.3. Derived Variables

3.1.3. Functions

3.1.4. Conditions

3.2. Scenarios

3.2.1. Function Properties

3.3. Model Visualization

4. Calculation Types

5. Data

6. Runs

7. MaxT

mguchiQ

1. Overview

The objective of this document is to explain the different components and concepts that make up

mguchiQ.

mguchiQ is a financial and statistical forward-looking calculation engine that calculates values for time

periods out into the future.

The central component of mguchiQ is a Model. A mguchiQ Model comprises the data specification

and calculations necessary to compute the results you require. A Model is built by first creating a

prototype in Excel and then importing this into mguchiQ.

A Run is the process of calculating Model results from a set of data inputs. mguchiQ comprises a variety

of Calculation Types that calculate and present results in different ways. mguchiQ can compute both

Deterministic and Stochastic results.

mguchiQ is web-based and can be scaled indefinitely.

2. How Results are Calculated

mguchiQ produces results along the following lines:

For every item in a given data set (e.g., for every policy in a book of policies)

For each time period from 1 to n (e.g., a number of months into the future)

For each value you require to be calculated

Calculate the value

mguchiQ

3. Models

Building a Model is the first step in being able to use the functionality of mguchiQ. Once a model is

built it can then be run against a set of data to produce results.

Building a Model requires that you define the data requirements and calculations that represent the

financial Products you wish to model. A Model is made up of one or more Products – think of Products

as financial instruments such as life policies, annuities, fixed deposits, etc. A Model can be simple,

representing only a few calculations for a single Product or can be very complex, representing a large

set of calculations for a multitude of Products. The output of the Model building process is an actual

piece of compiled computer code that is then executed when running the model against a set of data.

Each Product within a Model is described by a set of Variables (data) and a set of Functions (calculations

on the data).

In addition, a Model can contain a set of Scenarios that describe changes to Variables so that you can

see how this data change will affect your results. An example of a scenario could be a change in our

investment assumptions (possibly represented by a change in the yield curve), and / or a change in our

mortality assumptions.

Lastly a Model can contain a set of Conditions by which you can optionally partition your results. An

example of a Condition could be to partition our results by all policy holders under the age of 50 and all

policy holders over the age of 50.

mguchiQ

Model 1

Product A

Variables Functions

Conditions Scenarios

Product B

Variables Functions

Conditions Scenarios

Model 2

Product X

Variables Functions

Conditions Scenarios

Product Y

Variables Functions

Conditions Scenarios

mguchiQ

3.1. Products

Products represent financial instruments by describing the data (variables) required to perform

calculations and the calculations (functions) themselves.

A life insurance product, for example, may require data specific to each policy, such as the

premium and sum insured – this type of data is called instance variables as it is specific to each

policy instance. Data not specific to each policy, such as a yield curve, may also be required – this

type of data is called non-instance variables.

Our ultimate aim may be to calculate the Best Estimate Liability (BEL) of a set of life insurance

policies – BEL would be an example of a function of the product. We may require other functions

to aid in the calculation of BEL, such as the number of Deaths and the Net Cashflow per period

into the future.

A model can be simple and consist of only one product.

Alternatively a model could consist of more than one unrelated products – by unrelated we mean

that they share nothing on common.

More likely, if you build a model with more than one product, those products will share some

information – this is achieved by the concept of product inheritance.

Inheritance allows you to share information in a product hierarchy in order to avoid data and

function duplication. As an example, if we have 2 products in our model, say a life insurance

product and an annuity, and we want to calculate the present value of all future cashflows for

these 2 products, it is likely that we will need a yield curve for both the life insurance product and

the annuity. The yield curve can be defined in a base product from which both the life insurance

product and the annuity products are descended.

Base

• Yield Curve

• …

Life

• Premium

• Sum assured

• …

Annuity

• Monthly annuity

• …

mguchiQ

3.1.1. Constants

Constants are merely used to improve readability of formulae.

3.1.2. Variables

Variables describe the data required by a product necessary for the calculations

(functions) of that product.

There are various types of variables that can be used to describe the data of the products

in a model.

3.1.2.1. Instance Variables

Instance variables are assigned to each specific instance of a product.

Examples could be the sum assured of a life policy, the interest rate of a

fixed deposit, etc.

Instance variables, sometime referred to as model point data, are generally

supplied in a data source (file / database) comprising a download of

products from a source system, for example, current inforce life assurance

policies, or current inforce annuities.

3.1.2.2. Non-instance Variables

Non-instance variables are data shared by all instances of a product, i.e.

they are not specific to any one particular product instance. Examples could

be a yield curve by which to discount cashflow, mortality tables, etc.

There are 3 types of Non-instance variables:

Variable type Description

Single Variables Single Variables are singular, as opposed to array,
variables. An example could the monthly Expense
incurred to maintain each policy.

Series Variables Series Variables are variables made up of a series of
values, essentially a one-dimensional array. Examples
could be a Yield Curve or a Lapse Rate Curve.

Table Variables Tables Variables are variables made up of a table of
values, essentially a two-dimensional array. An
example could be a Mortality Table, giving the
probability of survival for a given policy holder age.
The table could have 4 columns representing a
combination of gender (male / female) and smoker
status (smoker / non-smoker).

mguchiQ

3.1.2.3. Derived Variables

Derived Variables are variables that are derived, via a formula, from other

variables. There are at least 2 reasons for creating Derived Variables:

• They simplify the formulae of the Functions of our products.

• They improve efficiency by evaluating the formula only once, rather

than being evaluated for each product instance.

There are 4 types of Derived Variables:

Derived Variable
Type

Description

Derived Instance
Variables

A Derived Instance Variable is a variable that is
derived, via a formula, from other Instance
Variables.

Derived Single
Variables

A Derived Single Variable is a variable that is
derived, via a formula, from other Single
Variables.

Derived Series
Variables

A Derived Series Variable is a variable that is
derived, via a formula, from other Series Variables.

Derived Table
Variables

A Derived Table Variable is a variable that is
derived, via a formula, from other Table Variables.

Examples of Derived Instance Variables could be:

• a series of Discount Factors derived from a Yield Curve (series variable).

• a series of future Escalated Expenses derived from the current Expense

(single variable) and an Inflation Curve (series variable).

mguchiQ

3.1.3. Functions

Functions are calculated values of a product, represented by formulae. As stated at the

beginning of this document:

“mguchiQ is a forward-looking calculation engine that calculates the values of the

functions of a product for time periods out into the future”

Each function is therefore related to a time period t.

Examples of functions could be:

• CurrentPolicyHolderAge(t) = FLOOR(AgeAtInception + ((DurationInForce + t) / 12))

Where:

o AgeAtInception is an Instance Variable representing the policy holders’ age

when they took out the policy.

o DurationInForce is an Instance Variable representing how long (months) the

policy has been in force a time t = 0.

• EscalatedAnnuity(t) = Annuity * ((1 + AnnuityEscalation) ^ PolicyAge(t))

Where:

o Annuity is an Instance Variable representing the base guaranteed Annuity.

o AnnuityEscalation is an Instance Variable representing by how much an Annuity

will escalate annually.

o PolicyAge(t) is another Function of the product representing the age of the

policy at time t.

3.1.4. Conditions

Conditions allow us to create additional result sets that will only include portions of our

data set based on conditions that we specify in our model.

An example of a Condition could be to partition our results by all policy holders under

the age of 50 and all policy holders over the age of 50.

mguchiQ

3.2. Scenarios

Scenarios describe changes to Non-Instance Variables so that you can see how these changes

affect your results. An example of a scenario could be a change in our investment assumptions

(possibly represented by a change in the yield curve), and / or a change in our mortality

assumptions.

Scenarios consist of a set of Scenario Adjustments – each Adjustment indicates how to change

a specific Variable.

As part of defining a scenario we can also specify additional properties of functions that

determine how results are aggregated for the scenario. An example could be to only aggregate

results for positive scenario variances.

mguchiQ

3.3. Model Visualisation

Once a model has been successfully built, mguchiQ will allow you to see a visual representation of the model which can be useful in understanding and

debugging a model. Below are some screenshots of the visualisation of a model:

Model visualization - different items types (variables, functions, etc.) are coloured differently

mguchiQ

Clicking on an item will highlight all the flows into and out of that item

mguchiQ

Hovering over an item will bring up useful information about that item, such as its formula

__

mguchiQ

4. Calculation Types

mguchiQ can currently create the following different calculation types:

Type Calculation Description
General Check Checks the integrity of the data.

Deterministic

Aggregate Performs calculations on individual product items (e.g. policies) for a range
of time periods (t) and aggregates the results into a result set. The
aggregated (book level) results are stored.

T Performs calculations for a given time period (t) and stores results per
individual product item (e.g. policy). This allows an expansion per product
item of the values calculated in the Aggregate result set for a chosen time
period (t).

Product Performs calculations for the specified product item (e.g. policy). Also
creates an Excel spreadsheet of the calculations for the specified product
item. Note that the Excel spreadsheet is populated with actual formulae
(not values) so that calculations can be easily audited.

Goal seek Goal seeks a particular Function for each individual product item at a given
time period (t).

Stochastic Aggregate Performs an aggregate calculation for each scenario in a stochastic data set,
with each scenario’s values being stored. Results can be extracted either
as the average of all the scenarios or by selecting different percentiles of
the calculated data.

__

mguchiQ

5. Data

When executing an mguchiQ Run it is necessary to supply data that will be fed into the calculations you

require. There are generally 2 types of data requirements:

• Instance Data - the individual product data items, such as a book of insurance policies (sometimes

referred to as model point data).

• Non-instance Data - supplementary data that is not specific to a product instance, such as mortality

tables or yield curves.

mguchiQ allows for various ways of specifying data for a Run:

• Via an Excel spreadsheet – this makes it very easy to test a Model independently of having access

to any external data sources.

• via an SQL query from an SQL data source.

Any combination of Excel and SQL data sources can be combined in specifying the data for a Run.

__

mguchiQ

6. Runs

A Run is the process of submitting a request to mguchiQ to calculate some values. The parameters of

the Run are specified via an Excel spreadsheet that contains information such as:

• The Model to be used.

o Which Functions of the Model to calculate.

o Which Conditions of the Model to calculate.

o Which Scenarios of the Model to calculate.

• The Result Type required.

o Any specific details pertaining to the Result Type requested.

• The Instance Data, such as a set of policies. This data can be included in the Excel spreadsheet or

specified externally.

• The Non-Instance data, such as yield curves and mortality tables. This data can be included in the

Excel spreadsheet or specified externally.

The Excel spreadsheet containing all the Run details is upload to mguchiQ via the mguchiQ website.

Calculations occur in the background, and once complete, results are available from the mguchiQ

website.

__

mguchiQ

7. MaxT

To recap:

mguchiQ is a forward-looking calculation engine that calculates the values of the functions of a

model for time periods out into the future. It produces results along the following lines:

For every item (e.g., policy) in a given data set (e.g., a book of policies)

For each time period (t) from 1 to n (e.g., a number of months)

For each function in the model

Calculate the value of that function

There are therefore the following potential number of calculations in a result set:

Number of calculations = Number of items in given data set * n * number of functions

So, for a data set of 100,000 items (e.g., policies), a n of 1,200 (e.g., 1200 months, or 100 years out into

the future), and 50 functions in our model we would potentially have:

100,000 * 1,200 * 50 = 6 billion calculations

This is a large number of calculations and for efficiency we must make every attempt to reduce the

number of calculations without affecting our result set, thus the value of n becomes very important. The

value of n needs to be such that when calculating future values all significant future values are

incorporated. To be safe we could attach a value of 150 *12 = 1800 to n as no one has ever lived longer

than 150 years. But this will be hugely inefficient as we would be doing a large number of calculations

that have no real significance to our answers. Possibly a value of 100 * 12 = 1200 would be more

appropriate. This may be the right value for a policy holder than is currently 20 years old but for an 80

year-old policy holder we would again be calculating a lot of irrelevant information above, say, n = 480

(40 years), where the policy holder would be 120 years old.

In mguchiQ we refer the value of n as MaxT, the maximum number of future time periods t.

We unfortunately do not know the exact age profile of our policy holders before we initiate a run so

determining the correct value for MaxT is not straightforward. When specifying a model MaxT is

specified per product type, meaning you can have a different MaxT for different product types. So, we

could, for example, have a MaxT of 1200 (100 years) for a Life product (as we may expect to have policy

holders from 20 years old) and a MaxT of 840 (70 years) for an Annuity product (as we may expect our

minimum age for Annuity policy holders to be 50 years old).

An even more efficient way of specifying MaxT is via a formula. If MaxT is specified via a formula then

it is calculated per policy instance, meaning each policy has a different value of MaxT. An example

formula could be something along the lines of:

MaxT = MAX(1,(101-CurrentAge)*12)

A MaxT specified in this way would run all policies up to each policy holder being 101 years of age.

__

mguchiQ

Quick Reference Guide

mguchiQ Item Description

Model A description of the data and calculations required to represent one or more financial products.

 Products A financial product, such as a life policy.

 Constants Used to make formulae more readable.

Variables Data required for calculations.

 Instance Variables Data specific to a particular instance of a product, such as the premium of a policy.

Non-instance Variables Data external to any particular product instance, such as a yield curve.

 Single Variables A singleton data item, such as the current prime interest rate.

Series Variables A one-dimensional array of data, such as a yield curve.

Table Variables A two-dimensional array of table, such as a mortality table.

Derived Variables A value derived from one or more Instance or Non-Instance Variables.

 Derived Instance Variables A singleton variable derived from other instance and / or non-instance variables.

Derived Single Variables A singleton variable derived from other non-instance variables.

Derived Series Variables A one-dimensional array of data derived from other non-instance variables.

Derived Table Variables A two-dimensional array of data derived from other non-instance variables.

Functions Formulae representing the calculations you require.

Conditions A grouping of product instances for result aggregation purposes.

Scenarios A change to the non-instance input variables of a run, such as a shift in the yield curve.

 Scenario Adjustments The specific non-instance variable changes that make up a scenario.

Calculation Types The different calculations that can be performed.

 General

 Check Checks the integrity of instance data.

Deterministic Deterministic run types

 Aggregate Performs calculations on individual product items (e.g. policies) for a range of time periods (t) and aggregates the results into
a result set. Only the aggregated (book level) results are stored.

T Performs calculations for a given time period (t) and stores results per individual product item (e.g. policy). This allows an
expansion per product item of the values calculated in the Aggregate result set for a chosen time period (t).

Product Performs calculations for the specified product item (e.g. policy). Also creates an Excel spreadsheet, with formulae, of the
calculations for the specified product item enabling all calculations to be easily audited.

Goal Seek Goal seeks a particular function for each individual product item at a given time period (t).

Stochastic Stochastic run types.

 Aggregate Performs an aggregate calculation for each scenario in the stochastic data set, with each scenario’s values being stored.
Results can be extracted either as the average of all the scenarios or by selecting different percentiles of the calculated data.

MaxT The maximum number of future periods to use for calculation purposes.

__

mguchiQ

